Advanced Separation Solvents

Capability Title Development of Advanced Separation Solvents
Laboratory  Pacific Northwest National Laboratory (PNNL)
Capability experts  David Heldebrant and  Philip Koech
Description 

PNNL has developed unique capabilities to create solvents with the lowest projected energy requirements for CO2 and other acid gas separations.  The general class of solvents is termed “water lean,” which greatly reduces vaporization and sensible heat duties compared to conventional solvents.  PNNL’s unique capabilities includes molecular modeling expertise that works in concert with organic synthesis and experimental validation infrastructure.

PNNL’s carbon capture development laboratory includes state-of-the-art thermodynamic and kinetic testing capabilities, including VLE and wetted-wall contactors.

Limitations  None
Unique aspects  PNNL’s work in water-lean solvent development is leading DOE’s efforts in transformational carbon capture solvents.  The capabilities that extend from molecular modeling to synthesis and experimental validation represent a unique capability.
Availability  Some of the technology/ resources could be available depending on the needs of a new client.  Longer range planning could certainly enable availability for activities that are strategically important to the DOE.
Citations/references
  1. Heldebrant D J, Koech P K, Glezakou VA, Rousseau R J, Malhotra D, Cantu Cantu D   2017.   “Water-Lean Solvents for Post-Combustion CO2 Capture: Fundamentals, Uncertainties, Opportunities and Outlook”   Chemical Reviews 117(14):9594-9624. 10.1021/acs.chemrev.6b00768
  2. Cantu D C, D Malhotra, PK Koech, DJ Heldebrant, F Zheng F, CJ Freeman, R Rousseau, VA Glezakou. 2016. “Structure-Property Reduced Order Model for Viscosity Prediction in Single-Component CO2-Binding Organic Liquids.” Green Chemistry 18, 4871-4874.  DOI: 10.1039/C6GC02203K.
  3. Cantu D, J Lee, MS Lee, DJ Heldebrant, PK Koech, CJ Freeman, R Rousseau, and VA Glezakou. 2016. “Dynamic Acid/Base Equilibrium in Single Component Switchable Ionic Liquids and Consequences on Viscosity.” J. Phys. Chem. Lett 7, 1646−1652, DOI: 10.1021/acs.jpclett.6b00395
  4. Zheng F, DJ Heldebrant, PM Mathias, PK Koech, M Bhakta, CJ Freeman, MD Bearden, and A Zwoster.  2016.  “Bench-Scale Testing and Process Performance Projections of CO2 Capture by CO2–Binding Organic Liquids (CO2BOLs) With and Without Polarity-Swing-Assisted Regeneration.”  Energy and Fuels 30(2):1192-1203.  DOI:10.1021/acs.energyfuels.5b02437
  5. Mathias PM, F Zheng, DJ Heldebrant, A Zwoster, G Whyatt, CJ Freeman, MD Bearden, PK Koech.  2015. “Measuring the Absorption Rate of CO2 in Non-Aqueous CO2BOL Solvents Using a Wetted-Wall Apparatus,” ChemSusChem, DOI: 10.1002/cssc.201500288
  6. Malhotra D, Koech P K, Heldebrant D J, Cantu Cantu D, Zheng F, Glezakou VA, Rousseau R J  2017.   “Reinventing design principles for developing low-viscosity carbon dioxide-binding organic liquids for flue gas clean up”   ChemSusChem 10(3):636-642. 10.1002/cssc.201601622
  7. Whyatt G A, Zwoster A, Zheng F, Perry R J, Wood B R, Spiry I, Freeman C J, Heldebrant D J  2017.   “Measuring CO2 and N2O Mass Transfer into GAP-1 CO2-Capture Solvents at Varied Water Loadings”   Industrial Engineering Chemistry Research 56(16):4830-4836. 10.1021/acs.iecr.7b00193
  8. Malhotra D, Page J P, Bowden M E, Karkamkar A J, Heldebrant D J, Glezakou VA, Rousseau R J, Koech P K  2017.   “Phase-Change Aminopyridines as Carbon Dioxide Capture Solvents”   Industrial and Engineering Chemistry Research 56(26):7534-7540. 10.1021/acs.iecr.7b00874
  9. Koech P K, Malhotra D, Heldebrant D J, Cantu Cantu D, Karkamkar A J, Zheng F, Bearden M D, Rousseau R J, Glezakou VA   2017.   “Toward Neutral Capture: Reconfiguring the Speciation of Amines for CO2 Capture”   Royal Society of Chemistry
PNNL’s State of the Art Synthetic Chemistry Expertise and Approaches for Solvent Development